Plasma Engine  2.0
Loading...
Searching...
No Matches
plVec2Template< Type > Class Template Reference

A 2-component vector class. More...

#include <Vec2.h>

Public Types

using ComponentType = Type
 

Public Member Functions

 PL_DECLARE_POD_TYPE ()
 
 plVec2Template ()
 default-constructed vector is uninitialized (for speed)
 
 plVec2Template (Type x, Type y)
 Initializes the vector with x,y.
 
 plVec2Template (Type v)
 Initializes all components with xy.
 
const plVec3Template< Type > GetAsVec3 (Type z) const
 Returns an plVec3Template with x,y from this vector and z set by the parameter.
 
const plVec4Template< Type > GetAsVec4 (Type z, Type w) const
 Returns an plVec4Template with x,y from this vector and z and w set by the parameters.
 
const Type * GetData () const
 Returns the data as an array.
 
Type * GetData ()
 Returns the data as an array.
 
void Set (Type xy)
 Sets all components to this value.
 
void Set (Type x, Type y)
 Sets the vector to these values.
 
void SetZero ()
 Sets the vector to all zero.
 
PL_DECLARE_IF_FLOAT_TYPE Type GetLength () const
 Returns the length of the vector.
 
PL_DECLARE_IF_FLOAT_TYPE plResult SetLength (Type fNewLength, Type fEpsilon=plMath::DefaultEpsilon< Type >())
 Tries to rescale the vector to the given length. If the vector is too close to zero, PL_FAILURE is returned and the vector is set to zero.
 
Type GetLengthSquared () const
 Returns the squared length. Faster, since no square-root is taken. Useful, if one only wants to compare the lengths of two vectors.
 
PL_DECLARE_IF_FLOAT_TYPE Type GetLengthAndNormalize ()
 Normalizes this vector and returns its previous length in one operation. More efficient than calling GetLength and then Normalize.
 
PL_DECLARE_IF_FLOAT_TYPE const plVec2Template< Type > GetNormalized () const
 Returns a normalized version of this vector, leaves the vector itself unchanged.
 
PL_DECLARE_IF_FLOAT_TYPE void Normalize ()
 Normalizes this vector.
 
PL_DECLARE_IF_FLOAT_TYPE plResult NormalizeIfNotZero (const plVec2Template< Type > &vFallback=plVec2Template< Type >(1, 0), Type fEpsilon=plMath::DefaultEpsilon< Type >())
 Tries to normalize this vector. If the vector is too close to zero, PL_FAILURE is returned and the vector is set to the given fallback value.
 
bool IsZero () const
 Returns, whether this vector is (0, 0).
 
bool IsZero (Type fEpsilon) const
 Returns, whether this vector is (0, 0) within a certain threshold.
 
PL_DECLARE_IF_FLOAT_TYPE bool IsNormalized (Type fEpsilon=plMath::HugeEpsilon< Type >()) const
 Returns, whether the squared length of this vector is between 0.999f and 1.001f.
 
bool IsNaN () const
 Returns true, if any of x or y is NaN.
 
bool IsValid () const
 Checks that all components are finite numbers.
 
const plVec2Template< Type > operator- () const
 Returns the negation of this vector.
 
void operator+= (const plVec2Template< Type > &vCc)
 Adds cc component-wise to this vector.
 
void operator-= (const plVec2Template< Type > &vCc)
 Subtracts cc component-wise from this vector.
 
void operator*= (Type f)
 Multiplies all components of this vector with f.
 
void operator/= (Type f)
 Divides all components of this vector by f.
 
bool IsIdentical (const plVec2Template< Type > &rhs) const
 Equality Check (bitwise)
 
bool IsEqual (const plVec2Template< Type > &rhs, Type fEpsilon) const
 Equality Check with epsilon.
 
plAngle GetAngleBetween (const plVec2Template< Type > &rhs) const
 Returns the positive angle between *this and rhs.
 
Type Dot (const plVec2Template< Type > &rhs) const
 Returns the Dot-product of the two vectors (commutative, order does not matter)
 
const plVec2Template< Type > CompMin (const plVec2Template< Type > &rhs) const
 Returns the component-wise minimum of *this and rhs.
 
const plVec2Template< Type > CompMax (const plVec2Template< Type > &rhs) const
 Returns the component-wise maximum of *this and rhs.
 
const plVec2Template< Type > CompClamp (const plVec2Template< Type > &vLow, const plVec2Template< Type > &vHigh) const
 Returns the component-wise clamped value of *this between low and high.
 
const plVec2Template< Type > CompMul (const plVec2Template< Type > &rhs) const
 Returns the component-wise multiplication of *this and rhs.
 
const plVec2Template< Type > CompDiv (const plVec2Template< Type > &rhs) const
 Returns the component-wise division of *this and rhs.
 
const plVec2Template< Type > Abs () const
 brief Returns the component-wise absolute of *this.
 
PL_DECLARE_IF_FLOAT_TYPE void MakeOrthogonalTo (const plVec2Template< Type > &vNormal)
 Modifies this direction vector to be orthogonal to the given (normalized) direction vector. The result is NOT normalized.
 
const plVec2Template< Type > GetOrthogonalVector () const
 Returns some arbitrary vector orthogonal to this one. The vector is NOT normalized.
 
PL_DECLARE_IF_FLOAT_TYPE const plVec2Template< Type > GetReflectedVector (const plVec2Template< Type > &vNormal) const
 Returns this vector reflected at vNormal.
 

Static Public Member Functions

static PL_DECLARE_IF_FLOAT_TYPE const plVec2Template< Type > MakeNaN ()
 Returns a vector with all components set to Not-a-Number (NaN).
 
static constexpr plVec2Template< Type > MakeZero ()
 Static function that returns a zero-vector.
 

Public Attributes

Type x
 
Type y
 

Detailed Description

template<typename Type>
class plVec2Template< Type >

A 2-component vector class.

Member Function Documentation

◆ IsNormalized()

template<typename Type >
PL_IMPLEMENT_IF_FLOAT_TYPE bool plVec2Template< Type >::IsNormalized ( Type fEpsilon = plMath::HugeEpsilon<Type>()) const
inline

Returns, whether the squared length of this vector is between 0.999f and 1.001f.

Note
Normalization, especially with SSE is not very precise. So this function checks whether the (squared) length is between a lower and upper limit.

◆ MakeOrthogonalTo()

template<typename Type >
PL_IMPLEMENT_IF_FLOAT_TYPE void plVec2Template< Type >::MakeOrthogonalTo ( const plVec2Template< Type > & vNormal)
inline

Modifies this direction vector to be orthogonal to the given (normalized) direction vector. The result is NOT normalized.

Note
This function may fail, e.g. create a vector that is zero, if the given normal is parallel to the vector itself. If you need to handle such cases, you should manually check afterwards, whether the result is zero, or cannot be normalized.

The documentation for this class was generated from the following files: